Effects of Relative and Absolute Sea Surface Temperature on Tropical Cyclone Potential Intensity Using a Single-Column Model

نویسندگان

  • HAMISH A. RAMSAY
  • ADAM H. SOBEL
چکیده

The effects of relative and absolute sea surface temperature (SST) on tropical cyclone potential intensity are investigated using the Massachusetts Institute of Technology (MIT) single-column model. The model is run in two modes: (i) radiative–convective equilibrium (RCE) to represent the convective response to uniform warming of the ocean as in a homogeneous aqua planet, and (ii) weak temperature gradient (WTG) to represent the convective response to warming over a limited area of ocean while the SST outside that area remains unchanged. The WTG calculations are taken to represent the sensitivity of the atmospheric state to relative SST changes, while the RCE calculations are taken to represent the sensitivity to absolute SST changes occurring in the absence of relative SST changes. The potential intensity is computed using temperature and moisture profiles from the two sets of experiments for various values of SST. The computed potential intensity is more sensitive to relative SST than to absolute SST, with slopes of between about 7 and 8 m s 8C (depending on choice of input parameters in the model’s convection scheme and other details of the model configuration) in the WTG calculations and about 1 m s 8C in RCE. The sensitivity to relative SST obtained from these calculations is quantitatively similar to that obtained previously by G. Vecchi and B. J. Soden from global climate model output. The greater sensitivity of potential intensity to SST in the WTG simulations (relative to RCE) can be attributed primarily to larger changes in the air–sea thermodynamic disequilibrium in those calculations as SST changes, which results from the inability of the free troposphere to adjust to the SST in WTG as it does in RCE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis

A Poisson regression between the observed climatology of tropical cyclogenesis (TCG) and largescale climate variables is used to construct a TCG index. The regression methodology is objective and provides a framework for the selection of the climate variables in the index. Broadly following earlier work, four climate variables appear in the index: low-level absolute vorticity, relative humidity...

متن کامل

Impact of scaling behavior on tropical cyclone intensities

[1] Theory suggests tropical cyclone maximum potential intensity increases with increasing ocean temperature. However, most tropical cyclones fail to achieve this maximum intensity. Instead, empirical studies suggest that tropical cyclone intensities are uniformly distributed between this maximum potential intensity and an intensity that marks the transition between tropical storm and hurricane...

متن کامل

Tropical cyclone rainfall area controlled by relative sea surface temperature

Tropical cyclone rainfall rates have been projected to increase in a warmer climate. The area coverage of tropical cyclones influences their impact on human lives, yet little is known about how tropical cyclone rainfall area will change in the future. Here, using satellite data and global atmospheric model simulations, we show that tropical cyclone rainfall area is controlled primarily by its e...

متن کامل

Nonlocality of Atlantic tropical cyclone intensities

5 [1] The assumption that tropical cyclones respond primarily to sea surface temperatures (SSTs) local to 6 their main development regions underlies much of the concern regarding the possible impacts of 7 anthropogenic greenhouse warming on tropical cyclone statistics. Here the observed relationship between 8 changes in sea surface temperature and tropical cyclone intensities in the Atlantic ba...

متن کامل

An environmentally forced tropical cyclone hazard model

A physics-based statistical stochastic system is developed for estimating the long-term hazard of rare, high impact landfall events globally from ensembles of synthetic tropical cyclones. There are three components representing the complete storm lifetime: an index-based genesis model, a beta-advection track model and an autoregressive intensity model. All three components depend upon the local...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011